

TAMIL NADU OPEN UNIVERSITY

Chennai - 15 School of Science

ASSIGNMENT

Programme Code No : 131

Programme Name : B.Sc., Mathematics

Course Code & Name : BMS-11, Elements of Calculus

Batch : CY 2019

No. of Assignment : One Assignment for Each 2 Credits

Maximum Marks : 100 Weightage : 25%

Assignment - I

$Part - A (4 \times 10 = 40 Marks)$

Answer all questions. Each question carries 10 marks.

- 1. Explain comparison test and show that the series $\frac{1}{log2} + \frac{1}{log3} + ... + \frac{1}{logn} + ...$ is divergent.
- 2. Find the volume of the tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the co-ordinate planes.
- 3. Find the radius of curvature of the cardiod $r = a(1 \cos \theta)$.
- 4. Find the extreme values of $y^2 + 4xy + 3x^2 + x^3$.

$Part - B (2 \times 30 = 60 Marks)$

Answer any two of the questions. Each question carries 30 marks.

- 1. Define Beta function and explain properties of Beta function.
- 2. Derive the reduction formula for $\int \cos^n x \, dx$ and hence evaluate $\int_0^{\pi/2} \cos^n x \, dx$.
- 3. State and prove Raabe's Test.

Assignment - II

$$Part - A (4 \times 10 = 40 Marks)$$

Answer all questions. Each question carries 10 marks.

- 1. Test for convergence the series $\sum \frac{1}{n} \sin \frac{1}{n}$.
- 2. The cycloid $x = a (\theta \sin \theta)$, $y = a (1 \cos \theta)$ rotates about the tangent at its vertex. Find the surface area formed.
- 3. Find the evolute of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 4. Find the maximum and minimum values of $x \sin 2x + \frac{1}{3} \sin 3x$ in $[-\pi, \pi]$.

$Part - B (2 \times 30 = 60 Marks)$

Answer any two of the questions. Each question carries 30 marks.

- 1. State and prove Cauchy's second theorem on limits.
- 2. Derive the reduction formula for $\int \sin^n x \, dx$ and hence evaluate $\int_0^{\pi/2} \sin^n x \, dx$.
- 3. State and prove D'Alembert's Ratio Test.

Assignment – III

$$Part - A (4 \times 10 = 40 Marks)$$

Answer all questions. Each question carries 10 marks.

- 1. State and prove Cauchy's general principle of convergence for series.
- 2. Prove that the perimeter of the Cardiod $r = a(1 \cos \theta)$ is 8 a.
- 3. Find the envelope of the family of the curve $(x a)^2 + (y a)^2 = 4a$.
- 4. Find the nth derivative of $x^3 \sin 2x$

$Part - B (2 \times 30 = 60 Marks)$

Answer any two of the questions. Each question carries 30 marks.

- 1. Derive the reduction formula for $\int cos^m x \cos nx \ dx$ and hence evaluate $\int_0^{\pi/2} cos^m x \cos nx \ dx$, and hence prove that $\int_0^{\pi/2} cos^n x \cos nx \ dx = \frac{\pi}{2^{n+1}}$
- 2. Derive the formula for Radius of curvature.
- 3. Define Gamma function, Show that the Gamma function $\Gamma(n)$ converges for n>0 and derive the recurrence formula.

Assignment - IV

$$Part - A (4 \times 10 = 40 Marks)$$

Answer all questions. Each question carries 10 marks.

- Prove that every convergent sequence is a Cauchy sequence. What about the converse?
 Justify.
- 2 Write a note on Jacobians
- 3. Find the area of the larger loop of the curve $r = 2 + 4\cos\theta$.
- . 4. Prove that the envelope of a family of curves touches each member of the family.

$Part - B (2 \times 30 = 60 Marks)$

Answer any two of the questions. Each question carries 30 marks

- 1. Derive the reduction formula for $\int sin^m x \cos^n x \, dx$ and hence evaluate $\int_0^{\pi/2} sin^m x \cos^n x \, dx$, where m and n positive integers.
- 2. Prove that $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}$ can be transformd into $\frac{\partial^2 v}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2} + \frac{1}{r} \frac{\partial v}{\partial r}$ using polar coordinates.
- 3. State and prove Leibnitz Theorem and hence find the n^{th} derivative of $e^x \log x$

TAMIL NADU OPEN UNIVERSITY

Chennai - 15 School of Science

ASSIGNMENT

Programme Code No : 131

Programme Name : B.Sc., Mathematics

Course Code & Name : BMS-12, Trigonometry, Analytical Geometry

(3d) and Vector Calculus

Batch : CY 2019

No. of Assignment : One Assignment for Each 2 Credits

Maximum Marks : 100 Weightage : 25%

Assignment – I

$Part - A (4 \times 10 = 40 Marks)$

Answer all questions. Each question carries 10 marks.

- 1. Evaluate, by stoke's theorem $\int_C (e^x dx + 2y dy dz)$ where C is the curve $x^2 + y^2 = 4$, z = 2.
- 2. If $F = x^2yi + y^2zj + z^2xk$, find curl F and curl curl F.
- 3. Prove that the planes 5x 3y + 4z = 1, 8x + 3y + 5z = 4 and 18x 3y + 13z = 6 contain a common line.
- 4. Find the angle between the planes x y + 2z 9 = 0 and 2x + y + z = 7.

$Part - B (2 \times 30 = 60 Marks)$

Answer any two of the questions. Each question carries 30 marks.

- 1. Verify Gauss's divergence Theorem for $F = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ taken over the rectangular parallelepiped $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$.
- 2. Curl (u x v) = $v \nabla u$ -u ∇v + u div v v div u.
- 3.(a) Derive the volume of a tetrahedron when the vertices are given.
 - (b) Find the equation of the cone whose vertex is at the point (α, β, γ) and whose generators intersect the guiding curve $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, z = 0.

Assignment - II

Part $- A (4 \times 10 = 40 \text{ Marks})$

Answer all questions. Each question carries 10 marks.

- 1. Verify Stoke's theorem for $F = (2x y) i yz^2j y^2zk$ where S is the upper half of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary in the xy plane.
- 2. Derive the equation of the right circular cylinder whose radius is r and axis is the line

$$\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n} .$$

- 3. Find the equation of the plane through the line of intersection of the planes 2x y + 5z 3 = 0 and 4x + 2y z + 7 = 0 and parallel to the z axis.
- 4. Derive the equation of the plane in the Intercept form.

$$Part - B (2 \times 30 = 60 Marks)$$

Answer any two of the questions. Each question carries 30 marks.

- 1. Verify Gauss's Divergence theorem for the function $F = 2xzi + yzj + z^2k$ over the upper half of the sphere $x^2 + y^2 + z^2 = a^2$.
- 2. Prove Curl curl $\mathbf{F} = \text{grad div } \mathbf{F} \nabla^2 F$.
- 3. (a) Derive the condition for two general spheres to cut orthogonally.
 - (b) Show that the spheres $x^2 + y^2 + z^2 + 3x + 5y z 7 = 0$ and $x^2 + y^2 + z^2 + 2x 7y 3z 6 = 0$ are orthogonal.

Assignment - III

$$Part - A (4 \times 10 = 40 Marks)$$

Answer all questions. Each question carries 10 marks.

- 1. Show that the Green's theorem in a plane can be deduced as a special case of Stoke's theorem.
- 2. Find the equation of the cylinder whose generators are parallel to the line x = y = z and whose guiding curve is the circle $x^2 + y^2 + z^2 2x 3 = 0$, 2x + y + 2z = 0.
 - 3. Find the equation of the plane through the line of intersection of the planes x + y + z = 1, 2x + 3y + 4z 7 = 0 and perpendicular to the plane x 5y + 3z = 5.
 - 4. Sum the series : $\frac{\cos \alpha}{1!} + \frac{\cos 2\alpha}{2!} + \frac{\cos 3\alpha}{3!} + \dots \infty$

$Part - B (2 \times 30 = 60 Marks)$

Answer any two of the questions. Each question carries 30 marks.

- 1. Verify Gauss's Divergence theorem over the cube bounded by the planes x = 0, x = 1; y = 0, y = 1; z = 0 and z = 1 for $F = x^2 I + y^2 j + z^2 k$.
- 2. (a) Find the equation of the cylinder whose generators intersect the curve $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$, z = 0 and are parallel to line $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$.
 - (b) Find the equation of the right circular cylinder whose generators are parallel to the line x = -2y = 2z and which touch the sphere $x^2 + y^2 + z^2 2y 4z 11 = 0$.
- 3 (a). Find the Length of the Tangent from an external point to the general sphere
 - (b) Find the condition that the plane lx + my + nz = p may be a tangent plane to the Sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$.

Assignment – IV

$$Part - A (4 \times 10 = 40 Marks)$$

Answer all questions. Each question carries 10 marks.

- 1. Verify the divergence theorem for $F = 4xzi y^2j + yzk$ over the cube bounded by x = 0, x = 1, y = 1, z = 0, z = 1.
- 2. Derive the equation of the tangent plane to a sphere at a given point on it.
- 3. Find the equation of the plane through the point (1,-2,3) and the intersection of the planes 2x y + 4z = 7 and x + 2y 3z + 8 = 0.
- 4. Using Stoke's theorem evaluate $\int_c (yzdx + zxdy + xydz)$ where C is the curve $x^2 + y^2 = 1$, $z = y^2$.

$Part - B (2 \times 30 = 60 Marks)$

Answer any two of the questions. Each question carries 30 marks

- 1. Show that $\nabla^2 r^n = n(n + 1) r^{n-2}$.
- 2. (a) Find the equation of a cone with vertex at the origin.
 - (b) Find the equation of the right circular cylinder of radius 2 whose axis passes through (1,2,3) and has direction cosines proportional to (2,-3,6).
- 3. (a). Find the equation of the right circular cone whose vertex is origin and guiding curve the circle $x^2 + y^2 + z^2 + 2x y + 3z 1 = 0, x y + z + 4 = 0.$
 - (b). Find the equation of the sphere having its centre (5,-2,3) and which touches the line $\frac{x-1}{6} = \frac{y+1}{2} = \frac{z-12}{-3}$.

TAMIL NADU OPEN UNIVERSITY

Chennai - 15 School of Science

ASSIGNMENT

Programme Code No : 131

Programme Name : B.Sc., Mathematics

Course Code & Name : BMS-13, Differential Equations

Batch : CY 2019

No. of Assignment : One Assignment for Each 2 Credits

Maximum Marks : 100 Weightage : 25%

Assignment - I

$Part - A (4 \times 10 = 40 Marks)$

Answer all questions. Each question carries 10 marks.

1. Solve:
$$(3y - 7x + 7) dx + (7y - 3x + 3) dy = 0$$

2. Solve :
$$(y^4 + 2y) dx + (xy^3 + 2y^4 - 4x) dy=0$$
.

3. Solve:
$$\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{x^2 y^2 z^2}$$
.

4. Solve:
$$p(1 + q^2) = q(z-1)$$
.

$Part - B (2 \times 30 = 60 Marks)$

Answer any two of the questions. Each question carries 30 marks.

1. Solve by the method of variation of parameters.

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = x^2 e^x$$

2. Solve:
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = \frac{\log x. \sin(\log x) + 1}{X}$$

3 (a). Solve :
$$(D^2 - 4D + 3)Y = \sin 3x \cos 2x$$
.

(b). Solve :
$$(D^2 - 2D + 4) Y = e^x \cos x$$
.

Assignment - II

$Part - A (4 \times 10 = 40 Marks)$

Answer all questions. Each question carries 10 marks.

- 1. Solve: (2x + 4y 3) dy = (x + 2y 3) dx.
- 2. Solve: $(x^4 + y^4) dx xy^3 dy=0$.
- 3. Solve : $\frac{dx}{xz} = \frac{dy}{yz} = \frac{dz}{(x+y)^2}$.
- 4. Solve: $p + q = \sin x + \sin y$.

$Part - B (2 \times 30 = 60 Marks)$

Answer any two of the questions. Each question carries 30 marks.

1. Solve by the method of variation of parameters.

$$\frac{d^2y}{dx^2} + 4 y = \csc 2x$$

- 2. Solve: $x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = \frac{1}{(1-x)^2}$
- 3. (a) Solve : $(D^2 8D + 9)Y = 8\cos 5x$.
 - (b) Solve : $(D^2 5D + 6) Y = x^2 x + 2$