1. Let G be a group in which $(ab)^m = a^m b^m$ for three consecutive integers and for all $a, b \in G$. Prove that G is abelian.

2. Prove that the subgroup N of G is a normal subgroup of G if and only if every left coset of N in G is a right coset of N in G.

3. Prove that a finite integral domain is a field.

4. If U, V are ideals of R, let $U + V = \{u + v : u \in U, v \in V\}$. Prove that $U + V$ is also an ideal of R.
5. If V is a finite-dimensional space over F, prove that any two bases of V, have the same number of elements.

6. If V is a vector space and $u, v \in V$, then prove that $|\langle u, v \rangle| \leq \|u\|\|v\|$.

7. If L is an algebraic extension of K and if K is an algebraic extension of F, then prove that L is an algebraic extension of F.

8. If V is finite-dimensional over F, prove that $T \in A(V)$ is regular if and only if T maps V onto V.

SECTION B — (5 × 10 = 50 marks)

Answer any FIVE questions.

9. State and prove first part of Sylow’s theorem.

10. State and prove Cayley’s theorem.

11. If R is a ring with unit element, then for all $a, b \in R$ prove that

(a) $a.0 = 0.a = 0$

(b) $a(-b) = (-a)b = -(ab)$

(c) $(-a)(-b) = ab$

(d) $(-1)a = -a$

(e) $(-1)(-1) = 1$.

2 PG–387
12. Prove that every integral domain can be imbedded is a field.

13. If \(v_1, v_2, \ldots, v_n \) is a basis of \(V \) over \(F \) and if \(w_1, w_2, \ldots, w_m \) in \(V \) are linearly independent over \(F \), prove that \(m \leq n \).

14. If \(V \) and \(W \) are of dimensions \(m \) and \(n \) respectively over \(F \), then prove that \(\text{Hom}(V,W) \) is of dimensions \(mn \) over \(F \).

15. If \(F \) is of characteristic 0 and if \(a, b \) are algebraic over \(F \), then prove that there exist an element \(c \in F(a,b) \) such that \(F(a,b) = F(c) \).

16. If \(T \in A(V) \) has all its characteristic roots is \(F \), then prove that there is a basis of \(V \) is which the matrix of \(T \) is triangular.
M.Sc. DEGREE/P.G. DIPLOMA

First Year
Mathematics

REAL ANALYSIS

Time : 3 hours Maximum marks : 75

SECTION A — (5 \times 5 = 25 marks)

Answer any FIVE questions.

1. Prove that the ordered set \(R \) has the least upper bound property.

2. Prove that compact subsets of metric spaces are closed.

3. Prove that if \(f \) is continuous at a point \(p \in E \) and if \(g \) is continuous at \(f(p) \) then prove that \(h = g \circ f \) is continuous at \(p \).
4. Let \(f \) be monotonic on \((a, b)\), then prove that the set of points of \((a, b)\) at which \(f \) is discontinuous is almost countable.

5. State and prove mean value theorem.

6. If \(p^* \) is a refinement of \(p \) then prove that
\[U(p^*, f, \alpha) \leq U(p, f, \alpha). \]

7. State and prove Weierstrass theorem.

8. Prove that a linear operator \(A \) on \(R^n \) is invertible if and only if \(\det[A] = 0 \).

SECTION B — (5 \times 10 = 50 marks)

Answer any FIVE questions.

9. Prove that for every real \(x > 0 \) and every integer \(n > 0 \) there is one and only one real \(y \) such that \(y^n = x \).

10. Prove that
\[\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e. \]

11. Let \(f \) be a continuous mapping of a compact metric space \(X \) into a metric space \(Y \), then prove that \(f \) is uniformly continuous on \(X \).

12. State and prove L’Hospital rule.
13. If γ' is continuous on $[a, b]$, then prove that γ is rectifiable and $\Lambda(r) = \int_{r}^{b} |\gamma'(t)| \, dt$.

15. State and prove Parseval’s theorem.

16. State and prove the contraction principle.
P.G. DIPLOMA IN MATHEMATICS
EXAMINATION — JUNE 2018.

TOPOLOGY AND FUNCTIONAL ANALYSIS

Time : 3 hours Maximum marks : 75

PART A — (5 × 5 = 25 marks)

Answer any FIVE questions.

1. If \(Y \) is a subspace of \(X \), then prove that set \(A \) is closed in \(Y \) if and only if it equals the intersection of a closed set of \(X \) with \(Y \).

2. Prove that the image of a connected space under a continuous map is connected.

3. Prove that compactness implies the limit point compactness but not conversely.

4. Define the following:
 (a) First countable space
 (b) Second countable space
 (c) Dense subset.
5. Prove that the space l^n_p of all n-tuples $x = (x_1, x_2, \ldots, x_n)$ of scalars with the norm defined by $\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p \right)^{1/p}$ is a Banach space.

6. State and prove the uniform Boundedness theorem.

7. State and prove the Schwarz inequality in a Hilbert space H.

8. If M is a closed linear subspace of a Hilbert space H, prove that $H = M \oplus M^\perp$.

PART B — (5 × 10 = 50 marks)

Answer any FIVE questions.

9. If f is a continuous function from $X \rightarrow Y$, then prove that for every convergent sequence $\{x_n\} \rightarrow x$ in X, the sequence $\{f(x_n)\}$ converges to $f(x)$ in Y. Show also that the converse holds if X is metrizable.

10. Show that finite Cartesian product of connected spaces is connected.

2

PG–455
11. Let X be a non-empty Hausdorff space. If X has no insolated points, then prove that X is uncountable.

12. Suppose that X has a countable basis. Then prove the following:

 (a) Every open covering of X contains a countable subcollection covering X.

 (b) There exists a countable subset of X that is dense in X.

13. Let M be a closed linear subspace of a normed linear space N. If the norm of a coset $x + M$ in the quotient space N/M is defined by $\|x + M\| = \inf \{\|x + m\| / m \in M\}$, then prove that N/M is a normed linear space. If N is a Banach space, then prove that N/M a Banach space.

14. State and prove the closed graph theorem.

15. Let H be a Hilbert space and let f be an arbitrary functional in H^*. Then prove that there exists a unique vector y in H such that $f(x) = (x, y)$ for every x in H.

3
16. (a) If T is an operator on H then prove that T is normal \iff its real and imaginary parts commute.

(b) Prove that an operator T on H is unitary \iff it is an isometric isomorphism of H onto itself.